The relations we have derived enable us to determine not only the effective transmissibility of a medium
with circular inclusions of arbitrary concentration, but also to obtain an analytic solution of the two-dimen~
sional problem of filtration in a medium with translational symmetry of inclusions. The analytic solution can
be obtained with any accuracy. The solution we have presented wag obtained in the third approximation with
an accuracy of ~¢f. The method used can also be applied to solve transmissibility problems in a medium with
inclusions of arbitrary shape. It is very interesting that when the concentration of the inclusions is not low,
the quantity u,, characterizing the flux density at infinity for a problem with widely spaced inclusions, loses its
original physical meaning, and the solution obtained corresponds fo filtration of an average flux density differ-
ent from u,. We note that a similar effect occurs also in treating transport processes in a crystal lattice. This
fact must also be taken info account in treating elasticity problems, for whose solution the method used in the
present article was originally developed.

The anthor thanks V. S. Fetisov for drawing his attention to the question of the physical meaning of a flow
density specified at infinity for a medium with translational symmetry of inclusions.
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THERMAL BOUNDARY LAYER ON A CYLINDRICAL GAS COLUMN
WITH DISTRIBUTED HEAT SOURCES

Yu. V. Sanochkin UDC 553.6.011

The study of stream interaction with a gas domain where energy liberation occurs is of practical and
theoretical interest. We speak of problems when the leaking gas passes through the heat liberation space.
The situation mentioned can occur in meterology, in stream heating in an electric arc or other form of elec-
trical discharge, in the air cooling of stabilized gas heat-liberating elements in reactors, in powerful electron
beam or other kinds of penetrating radiation propagation in a gas medium, etc. However, systematic computa-
tions of the flow and heat-transfer patterns have been executed in application to conditions for longitudinally
air-cooled stabilized arcs. Their results are shown most completely in [1-4]. Semiempirical numerical
{2, 4] and integral [1, 3] methods were used. There is also a number of theoretical papers of general nature
on flows with distributed heat supply (see [5] and the citations there) and a cycle of investigations devoted to
laser beam propagation and discharges on a substance (see [6]) which are primarily of estimating nature in
the theoretical part.

The purpose of this paper is to compute the thermal boundary layer being formed during air cooling of
a cylindrical gas column with arbitrary volume heat sources by an unbounded stream. The stationary problem
is examined under the assumption that the main heat elimination mechanism is heat conduction. We limit our-
selves to the case of longitudinal blowing around the column of heat liberating gas. In the reference system
coupled to the free stream the problem is formulated differently: determine the perturbation of the gas state
by the moving distributed heat sources.

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 60~63, May-
June, 1982. Original article submitted May 6, 1981.
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1. We introduce a cylindrical coordinate system with z axis directed along the stream and origin at the
center of the initial section of a gas column of radius ¢ around which the stream is blown (Fig. 1). The flow
parameters are constants in the free stream. In the case of an unbounded stream and no gas vortex, the prob—
lem can be simplified since the momentum equation allows the integral {1, 2]

U = u, = const, p = const, (1.1)

where u is the axial velocity and p is the pressure. The remaining continuity and energy equatiohs can be
solved by using the apparatus of boundary layer theory:

gr (rov) + rte %—z =0; (1.2)

22 . 190 RZAY
6r+0"t°° 6z=q_‘~75;(r7;57)’ 1.3)
p]’b = pmhw. (1.4)

Here v is the radial velocity; h, specific enthalpy; p, density; A, coefficient of heat conduction; and Cp» Spe-
cific heat of the gas. The source density q differs from zero for r =< ¢ and can be represented in the general
case in the form

@ ' by = const  (r<Ca),
.‘.I:bap vba:{ 0 (r>a), (1.5)
where by, is a factor dependent on secondary parameters for gasdynamics. For @ =1 we have the energy
liberation law due to ionization energy losses, say, during the passage of charged particles through a sub-
stance [7]. In other words, this case corresponds to the model of a stabilized electron beam of radius ¢ blown
off by a gas. If the expression for the Joulean heat is taken instead of (1.5) and Ohm's law is appended to
(1.2)~(1.4), then we arrive at the equations of an arc [1-4]. The system of equations (1.2) and (1.3) should be
supplemented by the boundary conditions

Uhemp = 0, Rlomg = By Blrnoe = D, (1.6)
ORhlOr],=y = 0, V]y=g = 0, 0h/OT|,m = 0.

2. To solve (1.2)-(1.4), we, following [1, 3], apply an approximate method analogous to the Karman—
Pohlhausen integral method. We define the finite thermal layer thickness A(z) as the magnitude of the domain
where the thermal action on the stream is substantial (see Fig. 1). On the boundary r = A of the thermal layer
the gas enthalpy differs from the unperturbed stream enthalpy h, by a certain small quantity. Integrating
(1.2) and (1.3) with respect to r within the thermal layer limits, taking account of (1.6); and eliminating v(A, z),
we obtain

d Az__ bapfnaz
=T u o 2.1
where
A 1
A§=5‘2r5%°(ze—i)dr= A2 S._mi—‘——)dn =7 (1——"‘> A?
7 0 oo x

Here n = r/A, the subscript m indicates the value of the variables on the axis. The quantity Ay represents
the thickness of the layer acquiring the enthalpy. The mean gas density within the thermal layer becomes
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small as z grows, and Ap— A according to (2.2). To solve the problem, it is sufficient to use a one-parameter
approximation of the enthalpy profile within the thermal layer limits

b=l =+ (o — hs)fn) - (2.3)
with the boundary conditions

Cf0) =1, f(0) =0, f(1) =0, f(1) =0, /(1) =0, ... (2.9

The polynomial f(n) = {1 — .,,)N (1 + N7), where N =2 if smoothing of the enthalpy profile on the layer boundary
is performed in the first derivative, N =3 if in the first and second, etc., satisfies the conditions (2.4). Poly-
nomialg of third and fourth power are ordinarily utilized in numerical computatlons The coefficient k; in (2.2)
is generally a function of pyy/p

1

2 2.5

kz‘“—jp 7 (1) dn ] (2.5)
[)

According to (2.5), k; ~ 1 for p,,) < p_ and k; < 1forp,, ~p,. It is allowable to set it constant (k;, ~ 1) be-
cause it can be expected that the influence of the inaccuracies admitted in the initial section will vanish with
distance from the beginning of the layer. An analogous remark can be made about the factor being obtained in
the integration of (1.5), which is set equal to one in the right side of (2.1). Used as the second differential
equation is (1.3) on the axis. Setting (2.3) into (1.3) and taking account of (1.6), we find

2\(N-L1) [

A (k - hoo) (2.6)

Pmlte -d—zm = bap;

Equations (1.4}, (2.1}, (2.2}, and (2.6) form a complete system to determine ppy; hyy> Ap, A. Introducing the
dimensionless variables

Y= Ah/a L= lplhe, z= bapm 7/umhx, .
and setting

Anlepm = (heolCpoc)s(g),
we reduce the system of equations to the form

dpldz = g, dgldz = g'~* — As(e)g — 1)/, (2.7)

where

A WADE habe

a® €poobel®®
The problem therefore contains a single similarity criterion A, whose physical meaning is evident from (2.6).
The boundary conditions are g(0) =1, (0) =0.
3. The solution of (2.7) near the initial section can be written in the series
Yg=2(1—(z+...), g=1+z+... (3.1)

The coefficients for the subsequent terms of the expansion are awkward, depend on A, and are not presented.
The singularity in the right side of the second equation in (2.7) is therefore apparent for x = 0.

The case of small A i8 of greatest interest, when the heat influx from the sources predominates over the
heat elimination (the case A > 1 corresponds to the problem of small perturbations of the stream properties
by energy sources [5]). For A = 0 the following simple solution of (2.7) is valid:

g=(1+an, p=2In(t+az)=Ing, | (3.2)
f = A* 1 (14an)*In(1 + az)
YT ke (tan*—1
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The solution (3.2) yields the maximal value of the enthalpy (thinning out), which can be achieved on the axis of
the thermal layer. The presence of heat elimination will naturally result in smaller quantities. According to
(3.2), the thickness of the enthalpy acquisition layer grows considerably more slowly than the enthalpy itself.

It is also easy to find the asymptotic of the solution of the problem for x »'1l. As X — « , we have g — =,
P — w, Pt — 0, g' — 0. Setting s(g) = gf, we find from (2.7)

Y = Aglta+p, (3.3)
It hence follows that

4 2 r—x
g (@) et g (g )iteeth +20+8 1

troetp A7 (3.4)
1+2a+8 1+2a4p 1420+ o
¥ (z) e+ ) (xz)'1+°‘+5 = i ALtetB (z — z,).

which are valid for x > x;(A) > 1 and x > X,(A) > 1, respectively. If x » Xy, g(x) > gx)) and X » Xy, $(X) »
¥ (xy), then the following simple expressions are obtained, respectively, for g and ¢

i 14a4-B 14048

=) G

A

Because of the above, the solutions (3.5) possess different accuracy for a given x. For instance, for A = 1073,
o =1, B =0.5, x =10% the errors in evaluating g and y are 12 and 32%, respectively. As x is doubled, they
diminish to 7 and 19%. It is interesting to note also the following property of the solutions for A = 0. In con-
formity with (3.5), for x > A~(1+@)/(a+B) the thermal layer thickness y becomes larger than the thermal con-
stant g while for A =0 always y < g. However, it should be recalled that for very large g the solution of the
problem is formal in nature if we go outside the framework of the assumptions made in the initial physical
model.

4. The solution in the intermediate domain is obtained by numerical integration of (2.7). The integral
curves for the case o =1, 8 = 0.5 (air under normal conditions) are presented in Figs. 2 and 3 (numbers at
the curves are values of A). As the heat elimination grows the layer thickness increases, and the maximal
value of the enthalpy (thinning out) drops on the layer axis. It is seen that for small x the curves merge in
conformity with (3.1). The dashed curves A =1072 are evaluated by the asymptotic formulas (3.5) and illu-
strate the accuracy of the expansions mentioned. For A =1079 the error in evaluating Y varies between 40 and
60% for 200 < x < 500 according to (3.5). A calculation by (3.4) with x, =100 will yield an accuracy on the
level of several percent (the dashed line A =107%in Fig. 3). The dashed line A =107% in Fig. 2 is also eval-
uated for x; =200 according to (3.4) (evaluation of g by (3.5) yields the same result within 10% limits).

In conclusion, it should be noted that the integral method used in this paper will visibly yield values of
the magnitudes of the enthalpy and density on the axis most exactly, which are of interest in practice.

The author is grateful to S. V. Nikonov for executing the numerical computations, and to M. A. Vlasov,
S. L. Vybornov, and A. V. Zharinov for discussions.
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METHOD OF MULTIEXPOSURE PHOTOGRAPHIC RECORDING
OF PARTICLES IN HIGH-VELOCITY TWO-PHASE FLOWS

V. M. Boiko, A. A. Karnaukhov, : : UDC 532.57+621.375
V. F. Kosarev, and A. N. Papyrin

There is a broad circle of experimental problems in the gasdynamics of multiphase systems when it is
important to assure a high fast response of the measuring circuit in addition to the necessity to measure high
velocities of 10-10% m/sec. Here are problems that occur in studying two-phase pulsed flows, particle dy-
namics behind shocks in investigations of heterogeneous detonation or deposition of detonation coatings, etc.,
when the characteristic times of the processes are ~10"1-10"° sec.

i should be noted that velocity measurement in the range 10-10? m/ sec assures utilization of laser-
Doppler systems with direct spectrum analysis examined in detail in the survey paper [1]. However, the prac-
tical realization of laser doppler velocimeter (LDV) circuits with a resolution time of ~10~9-1076 sec requires
the development of special methods of recording the spectra, which constrains their extension to the area of
problems related to the investigation of high-speed processes.

Here the development of a method of multiexposure photographic recording, based on the use of a strobo-
scopic light source yielding the frequency and duration of frame exposure, is of significant interest. By ap-
plying such a source in combination with different optical schemes (shadow, interferometer, holographic), ex-
tensive information can be obtained about the flow structure and particle parameters such as size, concentra-
tion, and velocity of their motion, can be determined.

Up to now, a number of papers [2-6] is known in which multiexposure photorecording was used to solve
different problems, for instance, to investigate turbulent flows [2-3], measure drop velocity [4], convective
fluid motion [5], particle free fall [6], etc,; however, all these papers refer to low velocity measurements
210 m/ sec.

The development of powerful pulse lasers as well as optical systems and photographic materials with
high resolution permits significant expansion of the possibilities of this method by increasing its response, and
spatial and time resolution. ' Utilization of a spatial-spectral method of analyzing multiexposure photographs
[6] affords the possibility of substantially simplifying data processing and executing measurements in a broad
range of concentrations. This paper is devoted to development of a multiexposure photorecording method to
investigate rapidly progressing processes in heterogeneous flows.

1. In principle, the scheme for multiexposure recording of a particle image is the following. Several
successive focussed images of a moving two-phase flow are recorded at equal time intervals At on the very

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 64-71,
May-June, 1982. Original article submitted March 30, 1981.
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